Natural Abundance ¹⁹⁵Pt Nuclear Magnetic Resonance Studies of some Platinum(II) Nitro Com**plexes**

FRED E. WOOD and ALAN L. BALCH*

Department of Chemistry, University of California, Davis, alif: 95616, U.S.A.

Received July 9,1982

The direct observation of 195 Pt NMR spectra is becoming a useful technique in the structural characterization of platinum complexes $[1, 2]$. Where coordinated nitrogen ligands are present, relaxation and/or unresolved coupling to ¹⁴N can cause broadening of the ¹⁹⁵Pt NMR spectra and consequent reduction in its utility. In such cases labeling with 15 N often serves to aleviate this problem, while at the same time facilitating the measurement of platinum-nitrogen coupling constants. This is the case with platinum nitro complexes, which have received only scant study by ¹⁹⁵Pt NMR spectroscopy [3]. Here we present data obtained by ¹⁹⁵Pt NMR spectroscopy for a number of nitro complexes labeled with 99 atom percent $NO₂$.

The ¹⁹⁵Pt NMR spectrum of an aqueous solution of $Na₂Pt(^{15}NO₂)₄$ is shown in Fig. 1, trace A. Instead of the broad line seen by Pesek and Mason [3] a well resolved quintet with relative intensities of 1:4:6:4:1 is seen at -2166 ppm (in good agreement with the value of -2159 reported earlier). In our spectrum the line width is 5 Hz. Spectral parameters for this complex and others are compiled in Table I.

*Author to whom correspondence should be addressed.

TABLE 1. ¹⁹⁵Pt NMR Data for Platinum Nitro Complexes.

Fig. 1. The 42.9 MHz 195 Pt{¹H} NMR spectrum of A, 0.1 M aqueous solution of $K_2Pf(NO_2)_4$ and B, 0.1 *M* aqueous solution of $K(H_2O)Pt(NO_2)$ ₃ in 12 mm tubes at 25 °C. The spectra were obtained using a 40 KHz spectral width using 5000 scans with a 35 μ s pulse (tilt angle 90 $^{\circ}$) and an acquisition time of 47 millisecond and a 150 millisecond delay. The reference is an external, aqueous $Na₂ PtCl₆$ solution.

The ¹⁹⁵Pt NMR spectrum of H_2 OPt(NO₂)₃ which was prepared by the method of Kukushkin and Stefanova (reaction 1) $[4, 5]$ is shown in Fig. 1, trace B.

$$
Pt(NO_2)_4^{2-} + NH_2SO_2OH \rightarrow
$$

$$
(H2O)Pt(NO2)3- + N2 + HSO4- (1)
$$

^aRecorded from aqueous solutions at 25 °C at 42.9 MHz. All complexes were prepared from 99 atom percent enriched NO₂. The r_{C} and r_{C} and the high frequency positive convention recommended by IUPAC is used in report of r_{C} . The $c_{\rm{rel}} = 1.6$

The resonance of the monoanion appears as a doublet of triplets. The unique nitro group, which is *trans* to water, is responsible for the doublet splitting with $J(^{195}Pt, ^{15}N) = 754$ while the two equivalent nitro roups, which are *trans* to one another, produce the triplet splitting with $J(^{195}Pt, ^{15}N) = 531$ Hz. The anion $(H_2O)Pt(NO_2)_3$ is a weak acid with a pKa of \sim -7 [5]. Thus by adjusting the pH of a solution of this anion to 8, $Pt(NO₂)₃OH²⁻$ becomes the principle species in solution. The 195 Pt NMR spectrum of $H_1(NO_2)_2OH^{2-}$ like that of $H_2OPt(NO_2)_2$ is a oublet of triplets, and again $J(195Pt, 15N)$ *trans* to hydroxide ligand is greater than $1J(195Pt, 15N)$ *tans* to a nitro ligand. The ¹⁹⁵Pt NMR spectrum of $P_1(NQ_2)_2(Q_2^2C_2 Q_2)^{2-}$ [6] consists of a triplet due to splitting arising from the presence of the two equivalent nitro groups.

These data indicate that $1J(^{195}Pt, ^{15}N)$ for nitro complexes, like other one-bond Pt-ligand couplings, is sensitive to the *trans* ligand. The effect of the *trans* ligand on the magnitude of ¹J(¹⁹⁵Pt, ¹⁵N) in this case is $NO_2^- < OH^- < H_2O$, $O_2C_2O_2^{2-}$ and this order is in accord with the usual trend that ligands with a high *trans* influence produce smaller values in *J(Pt, L) for the *trans* ligand L.

These data are useful in studying the reactions of platinum nitro complexes as the following example shows. The anion $(H_2O)Pt(NO_2)$ ¹/₃ undergoes further substitution as shown in equation $2 \, [4, 5]$. It is expected from kinetic studies that the nitro group

 $(H₂O)Pt(NO₂)₃⁻ + NH₂SO₂OH \rightarrow$

$$
(H_2O)_2Pt(NO_2) + N_2 + HSO_4^-
$$
 (2)

which is *trans* to another nitro group is the one effected by this reaction [5]. Consequently the product is expected to have the *cis* geometry. This prediction is confirmed by ¹⁹⁵Pt NMR spectroscopy. The ¹⁹⁵Pt NMR spectrum of the freshly formed product is a triplet with $1J(^{195}Pt, ^{15}N) =$ 679 Hz. This value of $\mathbf{1}$ is consistent with the presence of the *cis* isomer as the kinetically formed product. However this is not the thermodynamically favored isomer as shown by the fact that the intensity of the triplet at -1777 ppm decreases upon warming the sample to 60° C. The decay of this triplet is accompanied by the growth of a new triplet entered at -1780 ppm with a much smaller value f^{-1} J $(195Pt^{-15}N)$ of 470 Hz. We assign this resonance to the *trans* isomer of $(H_2O)_2Pt(NO_2)_2$ and concluded that this is the thermodynamically favored species.

These data demonstrate the utility of ¹⁹⁵Pt NMR spectroscopy coupled with 15 N labeling in the study platinum nitro complexes. It should be further noted that the magnitudes of $\frac{1}{1}(195 \text{Pt}, 15 \text{N})$ (470–754 Hz) are considerably larger than the coresponding values of $1J(^{195}Pt,$ $15N)$ for other nitrogen containing ligands: amines (200-400 Hz) [7] , imines (300-500 Hz) $[8]$, N-bound thiocyanate $(205-424 \text{ Hz})$ $[9]$ and N-bound cyanate (200-470 Hz) [9]. Consequently the magnitude of $1J(195Pt, 15N)$ should be diagnostic in detecting the presence of a coordinated nitro group.

Acknowledgements

We thank the Cancer Research Coordinating Committee of the University of California for financial support and Dr. G. B. Matson for assistance.

References

- R. G. Kidd and R. J. Goodfellow, in 'NMR and the Periodic Table', R. K. Harris and B. E. Mann, eds., Academic Press, New York, 1978, p. 249.
- P. S. Pregosin and L. M. Venanzi, *Chemistry in Britain, 14, 276* (1978).
- J. J. Pesek and W. R. Mason, *J. Magn. Resonance, 25,* 519 (1977).
- 4 Yu. N. Kukushkin and O. V. Stefanova, Russian J. Inorg. *Chem. (Engl. Transl.), 22, 1844 (1977).*
- Yu. N.'Kukushkin and 0. V. Stefanova, *Soviet J. Coord. Chem. (Engl. Transl.), 5,* 1379 (1979).
- M. Vezes, *Compt. rend., 125, 525* (1897).
- P. S. Pregosin, H. Omura and L. M. Venanzi, *J. Am. Chem. Sot., 95, 2047* (1973).
- H. Motschi and P. S. Pregosin, *Inorg. Chim. Acta, 40, 141 (1980).*
- 9 S. J. Anderson, P. L. Goggin and R. J. Goodfellow, J. Chem. Soc. Dalton Trans., 1959 (1976).