Natural Abundance ¹⁹⁵Pt Nuclear Magnetic Resonance Studies of some Platinum(II) Nitro Complexes

FRED E. WOOD and ALAN L. BALCH*

Department of Chemistry, University of California, Davis, Calif. 95616, U.S.A.

Received July 9, 1982

The direct observation of ¹⁹⁵Pt NMR spectra is becoming a useful technique in the structural characterization of platinum complexes [1, 2]. Where coordinated nitrogen ligands are present, relaxation and/or unresolved coupling to ¹⁴N can cause broadening of the ¹⁹⁵Pt NMR spectra and consequent reduction in its utility. In such cases labeling with ¹⁵N often serves to aleviate this problem, while at the same time facilitating the measurement of platinum-nitrogen coupling constants. This is the case with platinum nitro complexes, which have received only scant study by ¹⁹⁵Pt NMR spectroscopy [3]. Here we present data obtained by ¹⁹⁵Pt NMR spectroscopy for a number of nitro complexes labeled with 99 atom percent NO₂⁻.

The 195 Pt NMR spectrum of an aqueous solution of Na₂Pt(15 NO₂)₄ is shown in Fig. 1, trace A. Instead of the broad line seen by Pesek and Mason [3] a well resolved quintet with relative intensities of 1:4:6:4:1 is seen at -2166 ppm (in good agreement with the value of -2159 reported earlier). In our spectrum the line width is 5 Hz. Spectral parameters for this complex and others are compiled in Table I.

*Author to whom correspondence should be addressed.

TABLE 1. ¹⁹⁵Pt NMR Data for Platinum Nitro Complexes.

Fig. 1. The 42.9 MHz ¹⁹⁵Pt{¹H} NMR spectrum of A, 0.1 *M* aqueous solution of K₂Pt(NO₂)₄ and B, 0.1 *M* aqueous solution of K(H₂O)Pt(NO₂)₃ in 12 mm tubes at 25 °C. The spectra were obtained using a 40 KHz spectral width using 5000 scans with a 35 μ s pulse (tilt angle 90°) and an acquisition time of 47 millisecond and a 150 millisecond delay. The reference is an external, aqueous Na₂PtCl₆ solution.

The ¹⁹⁵Pt NMR spectrum of $H_2OPt(NO_2)_3^-$ which was prepared by the method of Kukushkin and Stefanova (reaction 1) [4, 5] is shown in Fig. 1, trace B.

$$Pt(NO_2)_4^{2-} + NH_2SO_2OH -$$

$$(H_2O)Pt(NO_2)_3 + N_2 + HSO_4$$
 (1)

Compound	δ (ppm) ^a	¹ J(¹⁹⁵ Pt, ¹⁵ N) trans to NO ₂	(Hz) ^a trans to O
$Pt(NO_2)_4^{2-}$	-2166	594	
$(H_2O)Pt(NO_2)_3$	-1928	531	754
$Pt(NO_2)_3(OH)^{2-}$	-1780	583	626
$Pt(NO_2)_2(C_2O_4)^{2-}$	-1487		748
$cis-(H_2O)_2Pt(NO_2)_2$	-1777		679
trans-(H2O)2Pt(NO2)2	-1780	470	

^aRecorded from aqueous solutions at 25 °C at 42.9 MHz. All complexes were prepared from 99 atom percent enriched NO₂. The reference is external aqueous H₂PtCl₆ and the high frequency positive convention recommended by IUPAC is used in reporting chemical shifts.

The resonance of the monoanion appears as a doublet of triplets. The unique nitro group, which is *trans* to water, is responsible for the doublet splitting with $J(^{195}Pt, ^{15}N) = 754$ while the two equivalent nitro groups, which are *trans* to one another, produce the triplet splitting with $J(^{195}Pt, ^{15}N) = 531$ Hz. The anion $(H_2O)Pt(NO_2)_3$ is a weak acid with a pKa of ~-7 [5]. Thus by adjusting the pH of a solution of this anion to 8, $Pt(NO_2)_3OH^{2-}$ becomes the principle species in solution. The ¹⁹⁵Pt NMR spectrum of $Pt(NO_2)_3OH^{2-}$, like that of $H_2OPt(NO_2)_3^-$, is a doublet of triplets, and again $J(^{195}Pt, ^{15}N)$ *trans* to a hydroxide ligand is greater than $^{1}J(^{195}Pt, ^{15}N)$ *trans* to a nitro ligand. The ¹⁹⁵Pt NMR spectrum of $Pt(NO_2)_2(O_2C_2O_2)^{2-}$ [6] consists of a triplet due to splitting arising from the presence of the two equivalent nitro groups.

These data indicate that ${}^{1}J({}^{195}Pt, {}^{15}N)$ for nitro complexes, like other one-bond Pt--ligand couplings, is sensitive to the *trans* ligand. The effect of the *trans* ligand on the magnitude of ${}^{1}J({}^{195}Pt, {}^{15}N)$ in this case is NO₂ < OH⁻ < H₂O, O₂C₂O₂² and this order is in accord with the usual trend that ligands with a high *trans* influence produce smaller values in ${}^{1}J(Pt, L)$ for the *trans* ligand L.

These data are useful in studying the reactions of platinum nitro complexes as the following example shows. The anion $(H_2O)Pt(NO_2)_3$ undergoes further substitution as shown in equation 2 [4, 5]. It is expected from kinetic studies that the nitro group

 $(H_2O)Pt(NO_2)_3^- + NH_2SO_2OH \rightarrow$

$$(H_2O)_2Pt(NO_2) + N_2 + HSO_4^-$$
 (2)

which is *trans* to another nitro group is the one effected by this reaction [5]. Consequently the product is expected to have the *cis* geometry. This prediction is confirmed by ¹⁹⁵Pt NMR spectroscopy. The ¹⁹⁵Pt NMR spectrum of the freshly formed product is a triplet with ¹J(¹⁹⁵Pt, ¹⁵N) = 679 Hz. This value of ¹J is consistent with the presence of the *cis* isomer as the kinetically formed product. However this is not the thermodynamically favored isomer as shown by the fact that the intensity of the triplet at -1777 ppm decreases upon

warming the sample to 60 °C. The decay of this triplet is accompanied by the growth of a new triplet centered at -1780 ppm with a much smaller value of ${}^{1}J({}^{195}Pt, {}^{15}N)$ of 470 Hz. We assign this resonance to the *trans* isomer of $(H_2O)_2Pt(NO_2)_2$ and concluded that this is the thermodynamically favored species.

These data demonstrate the utility of ¹⁹⁵Pt NMR spectroscopy coupled with ¹⁵N labeling in the study platinum nitro complexes. It should be further noted that the magnitudes of ¹J(¹⁹⁵Pt, ¹⁵N) (470–754 Hz) are considerably larger than the coresponding values of ¹J(¹⁹⁵Pt, ¹⁵N) for other nitrogen containing ligands: amines (200–400 Hz) [7], imines (300–500 Hz) [8], N-bound thiocyanate (205–424 Hz) [9] and N-bound cyanate (200–470 Hz) [9]. Consequently the magnitude of ¹J(¹⁹⁵Pt, ¹⁵N) should be diagnostic in detecting the presence of a coordinated nitro group.

Acknowledgements

We thank the Cancer Research Coordinating Committee of the University of California for financial support and Dr. G. B. Matson for assistance.

References

- 1 R. G. Kidd and R. J. Goodfellow, in 'NMR and the Periodic Table', R. K. Harris and B. E. Mann, eds., Academic Press, New York, 1978, p. 249.
- 2 P. S. Pregosin and L. M. Venanzi, *Chemistry in Britain*, 14, 276 (1978).
- 3 J. J. Pesek and W. R. Mason, J. Magn. Resonance, 25, 519 (1977).
- 4 Yu. N. Kukushkin and O. V. Stefanova, Russian J. Inorg. Chem. (Engl. Transl.), 22, 1844 (1977).
- 5 Yu. N. Kukushkin and O. V. Stefanova, Soviet J. Coord. Chem. (Engl. Transl.), 5, 1379 (1979).
- 6 M. Vèzes, Compt. rend., 125, 525 (1897).
- 7 P. S. Pregosin, H. Omura and L. M. Venanzi, J. Am. Chem. Soc., 95, 2047 (1973).
- 8 H. Motschi and P. S. Pregosin, *Inorg. Chim. Acta*, 40, 141 (1980).
- 9 S. J. Anderson, P. L. Goggin and R. J. Goodfellow, J. Chem. Soc. Dalton Trans., 1959 (1976).